Integrin dysregulation as a possible driver of matrix remodeling in Laminin-deficient congenital muscular dystrophy (MDC1A).

نویسندگان

  • Anthony Accorsi
  • Thomas Mehuron
  • Ajay Kumar
  • Younghwa Rhee
  • Mahasweta Girgenrath
چکیده

BACKGROUND Merosin-deficient congenital muscular dystrophy (MDC1A) is caused by a loss of Laminin-α2. Secondary manifestations include failed regeneration, inflammation, and fibrosis; however, specific pathomechanisms remain unknown. OBJECTIVES Using the LAMA2DyW (DyW) mouse model of MDC1A, we sought to determine if Integrin-αV and -α5, known drivers of pathology in other diseases, are dysregulated in dystrophic muscle. Additionally, we investigated whether Losartan, a drug previously shown to be antifibrotic in dystrophic scenarios, rescues integrin overexpression in DyW mice. METHODS qRT-PCR, ELISA, and immunohistochemistry were utilized to characterize integrin and matricellular protein dysregulation in hind limb muscles from WT and untreated/ Losartan-treated DyW mice. RESULTS Integrin-αV and -α5 are significantly upregulated on both gene and protein level in DyW muscle- Losartan treatment attenuates this dysregulation. Immunohistochemistry showed that Integrin-αV is expressed on both infiltrating cells as well as on muscle cells- Losartan attenuates expression in both compartments. In addition, transcriptional overexpression of common matricellular and beta binding partners is rescued close to WT levels with Losartan. Lastly, latent and active TGF-β are upregulated in the serum of DyW mice, but only active TGF-β levels are attenuated by Losartan treatment. CONCLUSIONS Our results suggest that overexpression of Integrin-αV and -α5 are likely contributing to secondary pathologies in MDC1A. We also believe that downregulation of Integrin-αV could be partially responsible for Losartan's antifibrotic effect and therefore could serve as a novel therapeutic target in MDC1A and other degenerative fibrotic diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transgenic overexpression of the α7 integrin reduces muscle pathology and improves viability in the dy(W) mouse model of merosin-deficient congenital muscular dystrophy type 1A.

Merosin-deficient congenital muscular dystrophy 1A (MDC1A) is a devastating neuromuscular disease that results in children being confined to a wheelchair, requiring ventilator assistance to breathe and premature death. MDC1A is caused by mutations in the LAMA2 gene, which results in the partial or complete loss of laminin-211 and laminin-221, the major laminin isoforms found in the basal lamina...

متن کامل

Linker molecules between laminins and dystroglycan ameliorate laminin-α2–deficient muscular dystrophy at all disease stages

Mutations in laminin-alpha2 cause a severe congenital muscular dystrophy, called MDC1A. The two main receptors that interact with laminin-alpha2 are dystroglycan and alpha7beta1 integrin. We have previously shown in mouse models for MDC1A that muscle-specific overexpression of a miniaturized form of agrin (mini-agrin), which binds to dystroglycan but not to alpha7beta1 integrin, substantially a...

متن کامل

Laminin alters fyn regulatory mechanisms and promotes oligodendrocyte development.

Mutations in LAMA2, the gene for the extracellular matrix protein laminin-alpha2, cause a severe muscular dystrophy termed congenital muscular dystrophy type-1A (MDC1A). MDC1A patients have accompanying CNS neural dysplasias and white matter abnormalities for which the underlying mechanisms remain unknown. Here, we report that in laminin-deficient mice, oligodendrocyte development was delayed s...

متن کامل

Laminin α2 Chain-Deficiency is Associated with microRNA Deregulation in Skeletal Muscle and Plasma

microRNAs (miRNAs) are widespread regulators of gene expression, but little is known of their potential roles in congenital muscular dystrophy type 1A (MDC1A). MDC1A is a severe form of muscular dystrophy caused by mutations in the gene encoding laminin α2 chain. To gain insight into the pathophysiological roles of miRNAs associated with MDC1A pathology, laminin α2 chain-deficient mice were eva...

متن کامل

A novel early onset phenotype in a zebrafish model of merosin deficient congenital muscular dystrophy

Merosin deficient congenital muscular dystrophy (MDC1A) is a severe neuromuscular disorder with onset in infancy that is associated with severe morbidities (particularly wheelchair dependence) and early mortality. It is caused by recessive mutations in the LAMA2 gene that encodes a subunit of the extracellular matrix protein laminin 211. At present, there are no treatments for this disabling di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuromuscular diseases

دوره 2 1  شماره 

صفحات  -

تاریخ انتشار 2015